80 research outputs found

    A Regularized Boundary Element Formulation for Contactless SAR Evaluations within Homogeneous and Inhomogeneous Head Phantoms

    Get PDF
    This work presents a Boundary Element Method (BEM) formulation for contactless electromagnetic field assessments. The new scheme is based on a regularized BEM approach that requires the use of electric measurements only. The regularization is obtained by leveraging on an extension of Calderon techniques to rectangular systems leading to well-conditioned problems independent of the discretization density. This enables the use of highly discretized Huygens surfaces that can be consequently placed very near to the radiating source. In addition, the new regularized scheme is hybridized with both surfacic homogeneous and volumetric inhomogeneous forward BEM solvers accelerated with fast matrix-vector multiplication schemes. This allows for rapid and effective dosimetric assessments and permits the use of inhomogeneous and realistic head phantoms. Numerical results corroborate the theory and confirms the practical effectiveness of all newly proposed formulations

    A robust and low frequency stable time domain PMCHWT equation

    Get PDF
    The time domain PMCHWT equation models transient scattering by piecewise homogeneous dielectrics. After discretization, it can be solved using the marching-on-in-time algorithm. Unfortunately, the PMCHWT equation suffers from DC instability: it supports constant in time regime solutions. Upon discretization, the corresponding poles of the system response function shift into the unstable region of the complex plane, rendering the MOT algorithm unstable. Furthermore, the discrete system becomes ill-conditioned when a large time step is used. This phenomenon is termed low frequency breakdown. In this contribution, the quasi Helmholtz components of the PMCHWT equation are separated using projector operators. Judicially integrating or differentiating these components of the basis and testing functions leads to an algorithm that (i) does not suffer from unstable modes even in the presence of moderate numerical errors, (ii) remains well-conditioned for large time steps, and (iii) can be applied effectively to both simply and multiply connected geometries

    High-order div- and quasi curl-conforming basis functions for calderon multiplicative preconditioning of the EFIE

    Get PDF
    A new high-order Calderon multiplicative preconditioner (HO-CMP) for the electric field integral equation (EFIE) is presented. In contrast to previous CMPs, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of high-order quasi curl-conforming basis functions. Like its predecessors, the HO-CMP can be seamlessly integrated into existing EFIE codes. Numerical results demonstrate that the linear systems of equations obtained using the proposed HO-CMP converge rapidly, regardless of the mesh density and of the order of the current expansion

    On the Hierarchical Preconditioning of the Combined Field Integral Equation

    Full text link
    This paper analyzes how hierarchical bases preconditioners constructed for the Electric Field Integral Equation (EFIE) can be effectively applied to the Combined Field Integral Equation (CFIE). For the case where no hierarchical solenoidal basis is available (e.g., on unstructured meshes), a new scheme is proposed: the CFIE is implicitly preconditioned on the solenoidal Helmholtz subspace by using a Helmholtz projector, while a hierarchical non-solenoidal basis is used for the non-solenoidal Helmholtz subspace. This results in a well-conditioned system. Numerical results corroborate the presented theory

    Accurate and conforming mixed discretization of the chiral MĂĽller equation

    Get PDF
    Scattering of time-harmonic fields by chiral objects can be modeled by a second kind boundary integral equation, similar to Muller's equation for scattering by nonchiral penetrable objects. In this contribution, a mixed discretization scheme for the chiral Muller equation is introduced using both Rao-Wilton- Glisson and Buffa-Christiansen funtions. It is shown that this mixed discretization yields more accurate solutions than classical discretizations, and that they can be computed in a limited number of iterations using Krylov type solvers

    Calderon multiplicative preconditioner for the PMCHWT equation applied to chiral media

    Get PDF
    In this contribution, a Calderon preconditioned algorithm for the modeling of scattering of time harmonic electromagnetic waves by a chiral body is introduced. The construction of the PMCHWT in the presence of chiral media is revisited. Since this equation reduces to the classic PMCHWT equation when the chirality parameter tends to zero, it shares its spectral properties. More in particular, it suffers from dense grid breakdown. Based on the work in [1], [2], a regularized version of the PMCHWT equation is introduced. A discretization scheme is described. Finally, the validity and spectral properties are studied numerically. More in particular, it is proven that linear systems arising in the novel scheme can be solved in a small number of iterations, regardless the mesh parameter
    • …
    corecore